본문 바로가기

푸리에 급수2

13 (신호 및 시스템)푸리에 급수 푸리에 급수(Fourier Series) 이전 장의 예제들은 하모닉 관계에 있는 삼각함수들의 합을 사용하여 다양한 주기적 파형을 합성할 수 있음을 보여주었다. 이제 우리는 다음 질문을 탐구하고자 한다. "모든 주기적 신호는 하모닉 관계에 있는 삼각함수들의 합으로 합성될 수 있을까?" 지금까지 우리는 이 전장들에서 보인파형들의 플롯을 얻기 위해 $$x(t) = \sum_{k=-N}^N a_ke^{j2 \pi kF_0 t}$$ 을 사용할 때 N을 유한하게 만들었다. 그러나 이제 우리는, N을 무한대로 놓으면 거의 모든 주기적 파형을 복소 지수 신호의 합으로 합성할 수 있다는 것을 증명할 것이다. 앞으로, 우리가 복소 지수의 합을 언급할 때, N이 필요에 따라 유한하거나 무한대일 수 있다고 가정할 것이다. 이.. 2024. 3. 27.
06 (신호 및 시스템)주파수 스펙트럼 분석 들어가며.. 이 장에서는 신호의 스펙트럼 개념을 소개한다. 이는 신호의 주파수 내용을 간결하게 표현하는 것으로, 사인파들의 합으로 표현할 수 있다. 우리는 2장에서 $$ x(t) = Acos(2\pi f_0t + \phi)$$ $$= Real [Xe^{j 2 \pi f_0 t}]$$ 와 같은 사인파의 특성에 대해 배웠다. 위 수식의 x(t)는 진폭 A, 주파수 f0 및 위상 ϕ 세 가지 수로 모든 t에 대해 정의된다. 지난 장에서는 복소 진폭 $$X = Ae^{j \phi}$$을 정의하고 페이저(phasor)라고 부르기로 했다. 위 수식의 신호는 전기 전원망에서 찾을 수 있는 전압 및 전류에 대한 좋은 수학적 모델이다. 전기 회로의 연구에서는 동일한 주파수를 가진 사인파들의 덧셈을 단순화할 수 있기 때문.. 2024. 3. 23.
반응형