본문 바로가기

복소지수함수 그래프2

03 (신호 및 시스템)복소 지수신호의 특성과 페이저 들어가며.. 이번 장에서는 이전 장에서 배운 내용을 기반으로 복소 지수 신호의 특성에 대해 배울 것이다. 결론부터 말하면 복소수에 복소지수신호를 곱해주면 주파수 w0로 회전하는 신호가 된다. 자세한 내용을 살펴보자. 복소수 곱셈 복소지수함수의 곱셈에 들어가기 전에 복소수의 곱셈에 대한 특성을 설명하겠다. 두 복소수가 곱해지는 경우, Amplitude는 서로 곱하고 각도는 서로 더해주면 된다. 예를 들어 $$z_3 = z_1z_2$$ 를 수행한다고 하자. 여기서, $$z_1 = r_1e^{jθ_1}$$ $$z_2 = r_2e^{jθ_2}$$ 로 두면 $$z_3 = r_1e^{jθ_1}r_2e^{jθ_2} = r_1r_2e^{jθ_1}e^{jθ_2}$$ $$=r_1r_2e^{j(θ_1+θ_2)}$$ $$r_.. 2024. 3. 16.
02 (신호 및 시스템)복소수와 복소지수함수, 극형식 들어가며.. 여러분이 전자공학과 학생이라면 이 신호 및 시스템은 전공 3년차에 배울 것이라 예상한다. 이번 장에서 다룰 내용인 복소수와 복소 지수 함수는 전공 1년차의 “공업수학”이라는 과목에서 이미 배운 내용일 것이다. 신호처리에 있어서도 정말 중요한 개념이다. 복소수 복소수 z는 실수부와 허수부로 나눌 수 있다. 또한 복소수는 z = (x, y) 표기법으로 나타낼 수 있는데, 여기서 x는 실수부(Real)이고 y는 z의 허수부(Image)다. 공학자들은 √-1에 i 대신 기호 j를 사용하므로 복소수를 z = x + jy로 나타낼 수 있다. 혼동하지 말자. 방금 배운 두가지 표현을 복소수의 데카르트 형식 표기법이라 한다. 복소수는 종종 복소수 평면(좌표평면)에서 점으로 표현할 수 있는데, 그림 (a)와.. 2024. 3. 15.
반응형